Skip to main content
. 2022 Oct 8;21(1):97–152. doi: 10.1007/s10311-022-01520-y

Table 5 .

Seaweed’s role in removing heavy metals, phosphorus, and nitrogen from wastewater

Category Seaweed type Wastewater source Treatment conditions Contaminants Treatment efficacy References
Red seaweed Gracilaria lemaneiformis Aquaculture

Cage co-culturing seaweed with the fish Pseudosciaena crocea

Water salinity: 26–29 pH: 7.43–7.83

Temperature:18.4–26.0 °C

Time: 20 days

Phosphate and nitrogen

Nitrogen: 21.0%

Phosphate: 28.6%

Wei et al. (2017)
Gracilaria chouae Aquaculture

Co-culturing seaweed with Sparus macrocephalus (black sea bream) Temperature: 16.61–22.68 °C

Water salinity: 28.33–31.07

Time: 28 days pH: 8.16–8.2

Phosphate and nitrogen

Nitrogen: 41.2% (nitrate-nitrogen: 37.76%, nitrite-nitrogen: 36.99%, ammonia–nitrogen: 29.27%)

Phosphorus: 46.2%

(Phosphate–phosphorus: 40.64%)

Wu et al. (2015)
Gracilaria tikvahiae Shrimp wastewater

Co-culturing seaweed with Litopenaeus vannamei (Pacific white shrimp)

Temperature: 18–33 °C

Salinity: 30.4–34.8 g/kg

Time: 18 days pH: 7.4–7.9

Nitrogen Nitrogen: 35% Samocha et al. (2015)

Agarophyton tenuistipitatum

Hydropuntia edulis

Brackish water

Temperature: 27–30 °C

Salinity: 20%

Seaweed biomass density: 0–4.5 g/litres pH:7.75–8.19

Time: 0-2 h hours

Nitrogen and Phosphorus

Optimal removal at 3.5 g/litres (ammonia–nitrogen > 80%

Phosphate phosphorus removal > 20%)

Sarkar et al. (2020)
Gracilaria lemaneiformis Seawater Temperature: 20 ± 2 ℃, salinity: 30 ± 0.2, irradiance: 80 micromole/(cubic metre/second) with a photoperiod of 12-h light: 12-h dark. Time: 3 days Nitrogen and Phosphorus Ammonia–nitrogen (45.99–59.79%, nitrate-nitrogen (13.10–30.21%), nitrite-nitrogen (12.88–14.11%), and phosphate-phosphorus (27.07–31.49%) Duan et al. (2019)
Gracilariacorticata Aqueous solution Metal concentration: 50 mg/l, pH 5, adsorbent dosage: 104 g/l, temperature: 29.9 °C Cobalt Cobalt: 87.8% Raju et al. (2021)
Brown seaweed Turbinaria ornata Municipal wastewater Metal concentration: 99.8 mg/l, mixing speed: 250 rounds per minute, adsorbent dosage: 16.2 g/l Lead 99.80% Al-Dhabi and Arasu (2022)
Sargassum sp. Simulated wastewater

Biomass size: 2.2 millimetre Dosage: 0.1 g Temperature: 30 °C pH: 5

Time: 4-h (nickel (ii) ion) and 6-h (copper (ii) ion

Nickel (ii) ion and copper (ii) ion Copper (ii) ion: 2.06 mmol/gram nickel (ii) ion: 1.69 mmol/gram Barquilha et al. (2017)
Sargassum sp. Synthetic wastewater

Time: 60 min

Temperature: 25 °C cadmium (ii) ion Seaweed: 0.5 g Rounds per minute: 150

pH: 4 Metal concentration: 5 mg/l zinc (ii) ion Biomass: 1 g pH: 3 Rounds per minute: 200 Ions concentration: 5 mg/l

Cadmium (ii) ion and zinc (ii) ion Cadmium (ii) ion: 95.3% zinc (ii) ion: 90.3% Mahmood et al. (2017)
Sargassum filipendula Simulated wastewater Sorbent size: 0.737 mm Sorbent: 2 mg/l Temperature: 25 °C Rounds per minute: 180 Time: 24 h pH: 3.5 Metal concentration: 1 mmol/l Silver, cadmium, chromium, copper, nickel, lead, and zinc ions Silver: 33.62% Cadmium: 78.03% Chromium: 72.8% Copper: 69.05% Nickel: 32.74% Lead: 56.19% Zinc: 44.21% Cardoso et al. (2017)
Sargassum dentifolium Simulated wastewater Sorbent dosage: 1.5 g/ 100 ml, Ion concentration: 100 parts per million, the flocculation contact time was 1 h followed by 12 h static, temperature: 50 °C, pH: 7 Chromium Chromium (VI): 99.68% Husien et al. (2019)
Cystoseira crinite and Cystoseira barbata Aqueous and wastewater solutions Chromium (III): Dosage: 100 parts per million, pH 4.5, contact time: 120 min, adsorbent dosage: 0.1 g/50 ml. Chromium (VI): Ion concentration: 100 parts per million, adsorbent dosage: 100 mg/50 ml, contact time: 24-h, pH: 2.0 Chromium (III) and Chromium (VI) Chromium (III): 73.34% (Cystoseira crinite), 70.70% (Cystoseira barbata) Chromium (VI): 28% (Cystoseira crinite) 35%, (Cystoseira barbata) Yalcin and Ozyurek (2018)

Seaweeds

Ulva intestinalis, Gracilaria sp.,

Fucus spiralis, Osmundea pinnatifida, Ulva lactuca, Fucus vesiculosus

Synthetic seawater Metal concentration: 1 micromole per cubic decimetre, 72 h contact time, temperature: 22 °C, pH: 8.5, salinity of 30 g per cubic decimetre Mercury

95%

90%

85%

80%

90%

80%

Fabre et al. (2020)
Sargassum muticum Mining-influenced water Metal dosage: 2.5 mg/l, temperature: 293 Kelvin, pH: 7 Arsenic Almost 100% Vieira et al. (2017)
Caulerpa scalpelliformis industrial wastewater

Adsorbent dosage: 1.5 g/litre, temperature: 30 °C

contact time: 1 h, pH: 5.7 Agitation: 150 rounds per minute

Zinc 83.3 mg/gram Jayakumar et al. (2021)
Sargassum polycystum Simulated water Cadmium: Adsorbent dosage: 1.8 g/l, pH: 4.65, agitation speed: 76 rounds per minute Zinc: pH: 5.7, agitation speed: 125 rounds per minute. adsorbent dosage: 1.2 g/l Multi-metals Cadmium: 86.20 Zinc: 92.90% Jayakumar et al. (2022)
Sargassum filipendula Real and synthetic effluents

Metal concentration: 1 mmol/l (19.56 mg/l of nickel; 17.33 mg/l of chromium; and 21.79 mg/l of zinc)

Temperature: 50 °C

Multi-metals Chromium: 0.864 mol/g Zinc: 0.302 mmol/g Nickel: 0.347 mmol/g Costa et al. (2020)
Green seaweed Ulva rigida Simulated wastewater Temperature: 20 °C Sorbent: 0.5 g Sorbent size: 0.5 cm Time: 5 h Rounds per minute: 180 Metals concentration: 25 mg/l arsenic cation (3 +), arsenic cation (5 +), antimony (3 +) selenium (4 +) ions and selenium (6 +) ions Selenium: (4 +) ions: 0.5 mg/g (pH: 2–4) Selenium: (6 +) ions: 0.2 mg/gram (pH: 2–3) Limited removal efficiency towards arsenic but was effective for antimony and selenium Filote et al. (2017)

Seaweeds demonstrated a great capacity for removing nutrients from wastewater. For instance, seaweeds can absorb over 41% of nitrogen and phosphorus. In addition to nitrate-nitrogen, ammonia–nitrogen, and nitrite-nitrogen, seaweeds can also remove other nitrogen forms. Similarly, seaweeds can absorb a variety of heavy metals, including copper, cobalt, iron, zinc, lead, nickel, cadmium, silver, chromium, arsenic, antimony, and mercury. This makes seaweeds a very promising option for wastewater treatment on a large scale

OSZAR »