Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):3347–3354. doi: 10.1083/jcb.109.6.3347

Involvement of protein phosphatases 1 and 2A in the control of M phase- promoting factor activity in starfish

PMCID: PMC2115967  PMID: 2574724

Abstract

Specific inhibition of types 1 and 2A protein phosphatases by microinjection of okadaic acid (OA) into starfish oocytes induced germinal vesicle breakdown and activation of M phase-promoting factor (MPF) and histone H1 kinase. The effects were evident in immature oocytes arrested at first meiotic prophase as well as in fully mature oocytes arrested at the pronucleus stage. In addition, MPF and histone H1 kinase were stabilized for several hours and protected from inactivation by inhibition of type 1 protein phosphatases with either OA or specific anti-phosphatase antibodies. Microinjection of okadaic acid was associated with unusual changes of the microtubule network, including the disappearance of spindles and extension of the cytoplasmic array of microtubules. MPF activation after OA injection was associated with dephosphorylation of phosphothreonine and phosphoserine residues in cdc2, showing that neither type 1 nor 2A protein phosphatases catalyzes these dephosphorylations. The effects of OA on MPF activation and inactivation appeared to involve the cyclin subunit. OA did not induce MPF activation in the absence of protein synthesis and it prevented degradation of cyclin. Therefore protein phosphatases types 1 and 2A appear to be involved in activation and inactivation of MPF involving mechanisms that operate after cyclin synthesis and before its degradation.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion D., Meijer L., Brizuela L., Beach D. cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell. 1988 Oct 21;55(2):371–378. doi: 10.1016/0092-8674(88)90060-8. [DOI] [PubMed] [Google Scholar]
  2. Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Booher R., Beach D. Involvement of a type 1 protein phosphatase encoded by bws1+ in fission yeast mitotic control. Cell. 1989 Jun 16;57(6):1009–1016. doi: 10.1016/0092-8674(89)90339-5. [DOI] [PubMed] [Google Scholar]
  4. Brautigan D. L., Gruppuso P. A., Mumby M. Protein phosphatase type-1 and type-2 catalytic subunits both bind inhibitor-2 and monoclonal immunoglobulins. J Biol Chem. 1986 Nov 15;261(32):14924–14928. [PubMed] [Google Scholar]
  5. Brautigan D. L., Shriner C. L., Gruppuso P. A. Phosphorylase phosphatase catalytic subunit. Evidence that the Mr = 33,000 enzyme fragment is derived from a native protein of Mr = 70,000. J Biol Chem. 1985 Apr 10;260(7):4295–4302. [PubMed] [Google Scholar]
  6. Cohen P., Klumpp S., Schelling D. L. An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett. 1989 Jul 3;250(2):596–600. doi: 10.1016/0014-5793(89)80803-8. [DOI] [PubMed] [Google Scholar]
  7. Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
  8. Cyert M. S., Kirschner M. W. Regulation of MPF activity in vitro. Cell. 1988 Apr 22;53(2):185–195. doi: 10.1016/0092-8674(88)90380-7. [DOI] [PubMed] [Google Scholar]
  9. Doonan J. H., Morris N. R. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase 1. Cell. 1989 Jun 16;57(6):987–996. doi: 10.1016/0092-8674(89)90337-1. [DOI] [PubMed] [Google Scholar]
  10. Dorée M., Peaucellier G., Picard A. Activity of the maturation-promoting factor and the extent of protein phosphorylation oscillate simultaneously during meiotic maturation of starfish oocytes. Dev Biol. 1983 Oct;99(2):489–501. doi: 10.1016/0012-1606(83)90298-1. [DOI] [PubMed] [Google Scholar]
  11. Dorée M., Picard A., Cavadore J. C., Le Peuch C., Demaille J. G. Calmodulin antagonists and hormonal control of meiosis in starfish oocytes. Exp Cell Res. 1982 May;139(1):135–144. doi: 10.1016/0014-4827(82)90327-5. [DOI] [PubMed] [Google Scholar]
  12. Drury K. Method for the preparation of active maturation promoting factor (MPF) from in vitro matured oocytes of Xenopus laevis. Differentiation. 1978 May 26;10(3):181–186. doi: 10.1111/j.1432-0436.1978.tb00962.x. [DOI] [PubMed] [Google Scholar]
  13. Dunphy W. G., Brizuela L., Beach D., Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell. 1988 Jul 29;54(3):423–431. doi: 10.1016/0092-8674(88)90205-x. [DOI] [PubMed] [Google Scholar]
  14. Gautier J., Matsukawa T., Nurse P., Maller J. Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Nature. 1989 Jun 22;339(6226):626–629. doi: 10.1038/339626a0. [DOI] [PubMed] [Google Scholar]
  15. Gautier J., Norbury C., Lohka M., Nurse P., Maller J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell. 1988 Jul 29;54(3):433–439. doi: 10.1016/0092-8674(88)90206-1. [DOI] [PubMed] [Google Scholar]
  16. Goris J., Hermann J., Hendrix P., Ozon R., Merlevede W. Okadaic acid, a specific protein phosphatase inhibitor, induces maturation and MPF formation in Xenopus laevis oocytes. FEBS Lett. 1989 Mar 13;245(1-2):91–94. doi: 10.1016/0014-5793(89)80198-x. [DOI] [PubMed] [Google Scholar]
  17. Grainger J. L., Winkler M. M., Shen S. S., Steinhardt R. A. Intracellular pH controls protein synthesis rate in the sea urchine egg and early embryo. Dev Biol. 1979 Feb;68(2):396–406. doi: 10.1016/0012-1606(79)90213-6. [DOI] [PubMed] [Google Scholar]
  18. Hashimoto N., Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev Biol. 1988 Apr;126(2):242–252. doi: 10.1016/0012-1606(88)90135-2. [DOI] [PubMed] [Google Scholar]
  19. Haystead T. A., Sim A. T., Carling D., Honnor R. C., Tsukitani Y., Cohen P., Hardie D. G. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature. 1989 Jan 5;337(6202):78–81. doi: 10.1038/337078a0. [DOI] [PubMed] [Google Scholar]
  20. Hermann J., Bellé R., Tso J., Ozon R. Stabilization of the maturation promoting factor (MPF) from Xenopus laevis oocytes. Protection against calcium ions. Cell Differ. 1983 Oct;13(2):143–148. doi: 10.1016/0045-6039(83)90106-9. [DOI] [PubMed] [Google Scholar]
  21. Hescheler J., Mieskes G., Rüegg J. C., Takai A., Trautwein W. Effects of a protein phosphatase inhibitor, okadaic acid, on membrane currents of isolated guinea-pig cardiac myocytes. Pflugers Arch. 1988 Aug;412(3):248–252. doi: 10.1007/BF00582504. [DOI] [PubMed] [Google Scholar]
  22. Hiramoto Y. A method of microinjection. Exp Cell Res. 1974 Aug;87(2):403–406. doi: 10.1016/0014-4827(74)90503-5. [DOI] [PubMed] [Google Scholar]
  23. Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K., Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989 Mar 31;159(3):871–877. doi: 10.1016/0006-291x(89)92189-x. [DOI] [PubMed] [Google Scholar]
  24. Kanatani H., Shirai H., Nakanishi K., Kurokawa T. Isolation and indentification on meiosis inducing substance in starfish Asterias amurensis. Nature. 1969 Jan 18;221(5177):273–274. doi: 10.1038/221273a0. [DOI] [PubMed] [Google Scholar]
  25. Karsenti E., Bravo R., Kirschner M. Phosphorylation changes associated with the early cell cycle in Xenopus eggs. Dev Biol. 1987 Feb;119(2):442–453. doi: 10.1016/0012-1606(87)90048-0. [DOI] [PubMed] [Google Scholar]
  26. Labbe J. C., Lee M. G., Nurse P., Picard A., Doree M. Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+. Nature. 1988 Sep 15;335(6187):251–254. doi: 10.1038/335251a0. [DOI] [PubMed] [Google Scholar]
  27. Labbe J. C., Picard A., Peaucellier G., Cavadore J. C., Nurse P., Doree M. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation. Cell. 1989 Apr 21;57(2):253–263. doi: 10.1016/0092-8674(89)90963-x. [DOI] [PubMed] [Google Scholar]
  28. Labbé J. C., Capony J. P., Caput D., Cavadore J. C., Derancourt J., Kaghad M., Lelias J. M., Picard A., Dorée M. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 1989 Oct;8(10):3053–3058. doi: 10.1002/j.1460-2075.1989.tb08456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Labbé J. C., Picard A., Karsenti E., Dorée M. An M-phase-specific protein kinase of Xenopus oocytes: partial purification and possible mechanism of its periodic activation. Dev Biol. 1988 May;127(1):157–169. doi: 10.1016/0012-1606(88)90197-2. [DOI] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Lee M. G., Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 1987 May 7;327(6117):31–35. doi: 10.1038/327031a0. [DOI] [PubMed] [Google Scholar]
  32. Lohka M. J. Mitotic control by metaphase-promoting factor and cdc proteins. J Cell Sci. 1989 Feb;92(Pt 2):131–135. doi: 10.1242/jcs.92.2.131. [DOI] [PubMed] [Google Scholar]
  33. Meijer L., Arion D., Golsteyn R., Pines J., Brizuela L., Hunt T., Beach D. Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase. EMBO J. 1989 Aug;8(8):2275–2282. doi: 10.1002/j.1460-2075.1989.tb08353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Minshull J., Blow J. J., Hunt T. Translation of cyclin mRNA is necessary for extracts of activated xenopus eggs to enter mitosis. Cell. 1989 Mar 24;56(6):947–956. doi: 10.1016/0092-8674(89)90628-4. [DOI] [PubMed] [Google Scholar]
  35. Murray A. W., Kirschner M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989 May 25;339(6222):275–280. doi: 10.1038/339275a0. [DOI] [PubMed] [Google Scholar]
  36. Ohkura H., Kinoshita N., Miyatani S., Toda T., Yanagida M. The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases. Cell. 1989 Jun 16;57(6):997–1007. doi: 10.1016/0092-8674(89)90338-3. [DOI] [PubMed] [Google Scholar]
  37. Peaucellier G., Picard A., Robert J. J., Capony J. P., Labbe J. C., Doree M. Phosphorylation of ribosomal proteins during meiotic maturation and following activation in starfish oocytes: its relationship with changes of intracellular pH. Exp Cell Res. 1988 Jan;174(1):71–88. doi: 10.1016/0014-4827(88)90143-7. [DOI] [PubMed] [Google Scholar]
  38. Picard A., Dorée M. Is calcium the second messenger of 1-methyladenine in meiosis reinitiation of starfish oocytes? Exp Cell Res. 1983 May;145(2):325–337. doi: 10.1016/0014-4827(83)90011-3. [DOI] [PubMed] [Google Scholar]
  39. Picard A., Harricane M. C., Labbe J. C., Doree M. Germinal vesicle components are not required for the cell-cycle oscillator of the early starfish embryo. Dev Biol. 1988 Jul;128(1):121–128. doi: 10.1016/0012-1606(88)90273-4. [DOI] [PubMed] [Google Scholar]
  40. Picard A., Peaucellier G., le Bouffant F., Le Peuch C., Dorée M. Role of protein synthesis and proteases in production and inactivation of maturation-promoting activity during meiotic maturation of starfish oocytes. Dev Biol. 1985 Jun;109(2):311–320. doi: 10.1016/0012-1606(85)90458-0. [DOI] [PubMed] [Google Scholar]
  41. Pines J., Hunt T. Molecular cloning and characterization of the mRNA for cyclin from sea urchin eggs. EMBO J. 1987 Oct;6(10):2987–2995. doi: 10.1002/j.1460-2075.1987.tb02604.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pondaven P., Cohen P. Identification of protein phosphatases-1 and 2A and inhibitor-2 in oocytes of the starfish Asterias rubens and Marthasterias glacialis. Eur J Biochem. 1987 Aug 17;167(1):135–140. doi: 10.1111/j.1432-1033.1987.tb13314.x. [DOI] [PubMed] [Google Scholar]
  43. Pondaven P., Meijer L. Protein phosphorylation and oocyte maturation. I. Induction of starfish oocyte maturation by intracellular microinjection of a phosphatase inhibitor, alpha-naphthylphosphate. Exp Cell Res. 1986 Apr;163(2):477–488. doi: 10.1016/0014-4827(86)90078-9. [DOI] [PubMed] [Google Scholar]
  44. Standart N., Minshull J., Pines J., Hunt T. Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte. Dev Biol. 1987 Nov;124(1):248–258. doi: 10.1016/0012-1606(87)90476-3. [DOI] [PubMed] [Google Scholar]
  45. Tamura S., Lynch K. R., Larner J., Fox J., Yasui A., Kikuchi K., Suzuki Y., Tsuiki S. Molecular cloning of rat type 2C (IA) protein phosphatase mRNA. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1796–1800. doi: 10.1073/pnas.86.6.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wu M., Gerhart J. C. Partial purification and characterization of the maturation-promoting factor from eggs of Xenopus laevis. Dev Biol. 1980 Oct;79(2):465–477. doi: 10.1016/0012-1606(80)90131-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES

OSZAR »