Abstract
Background—The pathogenesis of ulcerative colitis is unclear, but cytotoxic T lymphocytes infiltrating the mucosa have been implicated in mucosal damage. The Fas ligand (FasL), expressed on cytotoxic T lymphocytes, induces apoptosis in cells expressing Fas. Aim—To analyse FasL expression in affected colonic mucosa to ascertain Fas-FasL interaction in ulcerative colitis. Methods—FasL mRNA was quantified in colonic mucosal specimens from healthy subjects and patients with ulcerative colitis or Crohn's disease, using the competitive reverse transcription polymerase chain reaction. FasL mRNA localisation was determined by in situ hybridisation. Expression of Fas in colonic mucosa was analysed immunohistochemically. Phenotypes of lamina propria lymphocytes that expressed FasL were analysed by flow cytometry. Results—FasL mRNA was strongly expressed in active ulcerative colitis lesions, but not in those associated with active Crohn's disease or active proctitis-type ulcerative colitis. In situ hybridisation showed that FasL mRNA expression occurred in mononuclear cells infiltrating lesions. Fas was expressed in epithelial cells in ulcerative colitis and Crohn's disease, and in normal subjects. Cytometry showed that FasL was expressed in CD3 lymphocytes infiltrating the lamina propria in active lesions. Conclusions—FasL is expressed in CD3 lymphocytes infiltrating into ulcerative colitis but not Crohn's disease lesions, suggesting that Fas-FasL induced apoptosis participates in the mucosal damage of ulcerative colitis.
Keywords: Fas ligand; apoptosis; ulcerative colitis; reverse transcription polymerase chain reaction; T lymphocytes
Full Text
The Full Text of this article is available as a PDF (205.1 KB).
Figure 1 .
Protocols for the quantification of Fas ligand (FasL) transcripts. The procedures involved reverse transcription (RT), polymerase chain reaction (PCR) amplification, and digestion by AlwNI for FasL PCR products.
Figure 2 .
Amount of Fas ligand (FasL) transcript in terms of ulcerative colitis activity. Levels of FasL transcript were determined in normal colonic mucosa, colonic mucosa with active and inactive ulcerative colitis and active Crohn's disease relative to CTLL-2 derived FasL transcript. The relative amount of FasL transcript in each colon sample was corrected on the basis of the amount of RNA in the sample correlated to the amount of 28S RNA, determined by quantitative PCR.
Figure 3 .
Relative amounts of Fas ligand (FasL) transcripts and areas involved. Relative FasL transcripts were analysed in rectal mucosal specimens of patients with active ulcerative colitis (n=15) and inactive ulcerative colitis (n=5), on the basis of ulcerative colitis involvement in the colon. Patients with active ulcerative colitis were divided into three subgroups: those with proctitis (n= 5), left sided colitis (n=5), and total colitis (n= 5).
Figure 4 .
A comparison of Fas ligand (FasL) transcripts between uninvolved mucosa and involved lesions in the same patients in six active ulcerative colitis lesions. Involved lesions showed a significant increase in FasL transcripts in all cases (p<0.05, v uninvolved).
Figure 5 .
Expression and localisation of Fas ligand (FasL) mRNA in colon specimens, as detected by in situ hybridisation (ISH). ISH was performed with an FasL antisense RNA probe in sections from an active ulcerative colitis lesion (A, B), normal colonic mucosa (C), and an active Crohn's disease lesion (D). Representative data are shown. The results were similar in four subjects in each group. Original magnification: A, C and D, × 143; B, × 715.
Figure 6 .
Immunohistochemical detection of Fas in colonic mucosa. Sections from active ulcerative colitis lesions (A, C) and normal colon (B, D) were stained with mouse monoclonal antibody against human Fas. Original magnification: × 129.
Figure 7 .
Flow cytometric analysis of Fas ligand (FasL) expression on CD3 lamina propria lymphocytes (LPLs). Expression of FasL on CD3 LPLs isolated from (A) involved colonic lesions of ulcerative colitis, (B) active lesions of Crohn's disease, and (C) control colon mucosa was examined by immunofluorescence and FACS analysis. LPLs were stained with anti-human FasL antibody (solid line) or an isotype-matched control antibody (dotted line). Representative data from five or six cases each are shown. (D) Percentage of FasL expressing cells in CD3 LPLs.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abreu-Martin M. T., Vidrich A., Lynch D. H., Targan S. R. Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNF-alpha and ligation of Fas antigen. J Immunol. 1995 Nov 1;155(9):4147–4154. [PubMed] [Google Scholar]
- Allison M. C., Cornwall S., Poulter L. W., Dhillon A. P., Pounder R. E. Macrophage heterogeneity in normal colonic mucosa and in inflammatory bowel disease. Gut. 1988 Nov;29(11):1531–1538. doi: 10.1136/gut.29.11.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Das K. M., Dubin R., Nagai T. Isolation and characterization of colonic tissue-bound antibodies from patients with idiopathic ulcerative colitis. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4528–4532. doi: 10.1073/pnas.75.9.4528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Maria R., Boirivant M., Cifone M. G., Roncaioli P., Hahne M., Tschopp J., Pallone F., Santoni A., Testi R. Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J Clin Invest. 1996 Jan 15;97(2):316–322. doi: 10.1172/JCI118418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fais S., Capobianchi M. R., Pallone F., Di Marco P., Boirivant M., Dianzani F., Torsoli A. Spontaneous release of interferon gamma by intestinal lamina propria lymphocytes in Crohn's disease. Kinetics of in vitro response to interferon gamma inducers. Gut. 1991 Apr;32(4):403–407. doi: 10.1136/gut.32.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher G. H., Rosenberg F. J., Straus S. E., Dale J. K., Middleton L. A., Lin A. Y., Strober W., Lenardo M. J., Puck J. M. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995 Jun 16;81(6):935–946. doi: 10.1016/0092-8674(95)90013-6. [DOI] [PubMed] [Google Scholar]
- Galle P. R., Hofmann W. J., Walczak H., Schaller H., Otto G., Stremmel W., Krammer P. H., Runkel L. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med. 1995 Nov 1;182(5):1223–1230. doi: 10.1084/jem.182.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruss H. J., Dower S. K. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood. 1995 Jun 15;85(12):3378–3404. [PubMed] [Google Scholar]
- Hanabuchi S., Koyanagi M., Kawasaki A., Shinohara N., Matsuzawa A., Nishimura Y., Kobayashi Y., Yonehara S., Yagita H., Okumura K. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4930–4934. doi: 10.1073/pnas.91.11.4930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirota S., Ito A., Morii E., Wanaka A., Tohyama M., Kitamura Y., Nomura S. Localization of mRNA for c-kit receptor and its ligand in the brain of adult rats: an analysis using in situ hybridization histochemistry. Brain Res Mol Brain Res. 1992 Sep;15(1-2):47–54. doi: 10.1016/0169-328x(92)90150-a. [DOI] [PubMed] [Google Scholar]
- Kondo S., Imamura I., Shinomura Y., Matsuzawa Y., Fukui H. Determination of histidine decarboxylase mRNA in various rat tissues by the polymerase chain reaction. Inflamm Res. 1995 Mar;44(3):111–115. doi: 10.1007/BF01782020. [DOI] [PubMed] [Google Scholar]
- Kondo S., Shinomura Y., Kanayama S., Higashimoto Y., Kiyohara T., Yasunaga Y., Kitamura S., Ueyama H., Imamura I., Fukui H. Helicobacter pylori increases gene expression of hepatocyte growth factor in human gastric mucosa. Biochem Biophys Res Commun. 1995 May 25;210(3):960–965. doi: 10.1006/bbrc.1995.1750. [DOI] [PubMed] [Google Scholar]
- Kühn R., Löhler J., Rennick D., Rajewsky K., Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993 Oct 22;75(2):263–274. doi: 10.1016/0092-8674(93)80068-p. [DOI] [PubMed] [Google Scholar]
- Larsen C. G., Anderson A. O., Appella E., Oppenheim J. J., Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 1989 Mar 17;243(4897):1464–1466. doi: 10.1126/science.2648569. [DOI] [PubMed] [Google Scholar]
- Lee F. D. Importance of apoptosis in the histopathology of drug related lesions in the large intestine. J Clin Pathol. 1993 Feb;46(2):118–122. doi: 10.1136/jcp.46.2.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leithäuser F., Dhein J., Mechtersheimer G., Koretz K., Brüderlein S., Henne C., Schmidt A., Debatin K. M., Krammer P. H., Möller P. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest. 1993 Oct;69(4):415–429. [PubMed] [Google Scholar]
- Lindley I., Aschauer H., Seifert J. M., Lam C., Brunowsky W., Kownatzki E., Thelen M., Peveri P., Dewald B., von Tscharner V. Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil-activating factor: biological equivalence between natural and recombinant neutrophil-activating factor. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9199–9203. doi: 10.1073/pnas.85.23.9199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATTS S. G. The value of rectal biopsy in the diagnosis of ulcerative colitis. Q J Med. 1961 Oct;30:393–407. [PubMed] [Google Scholar]
- Mogil R. J., Radvanyi L., Gonzalez-Quintial R., Miller R., Mills G., Theofilopoulos A. N., Green D. R. Fas (CD95) participates in peripheral T cell deletion and associated apoptosis in vivo. Int Immunol. 1995 Sep;7(9):1451–1458. doi: 10.1093/intimm/7.9.1451. [DOI] [PubMed] [Google Scholar]
- Murch S. H., Braegger C. P., Sessa W. C., MacDonald T. T. High endothelin-1 immunoreactivity in Crohn's disease and ulcerative colitis. Lancet. 1992 Feb 15;339(8790):381–385. doi: 10.1016/0140-6736(92)90077-g. [DOI] [PubMed] [Google Scholar]
- Möller P., Walczak H., Reidl S., Sträter J., Krammer P. H. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia. Am J Pathol. 1996 Jul;149(1):9–13. [PMC free article] [PubMed] [Google Scholar]
- Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
- Ogasawara J., Watanabe-Fukunaga R., Adachi M., Matsuzawa A., Kasugai T., Kitamura Y., Itoh N., Suda T., Nagata S. Lethal effect of the anti-Fas antibody in mice. Nature. 1993 Aug 26;364(6440):806–809. doi: 10.1038/364806a0. [DOI] [PubMed] [Google Scholar]
- Rieux-Laucat F., Le Deist F., Hivroz C., Roberts I. A., Debatin K. M., Fischer A., de Villartay J. P. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995 Jun 2;268(5215):1347–1349. doi: 10.1126/science.7539157. [DOI] [PubMed] [Google Scholar]
- Sadlack B., Merz H., Schorle H., Schimpl A., Feller A. C., Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993 Oct 22;75(2):253–261. doi: 10.1016/0092-8674(93)80067-o. [DOI] [PubMed] [Google Scholar]
- Smith C. A., Farrah T., Goodwin R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994 Mar 25;76(6):959–962. doi: 10.1016/0092-8674(94)90372-7. [DOI] [PubMed] [Google Scholar]
- Suda T., Okazaki T., Naito Y., Yokota T., Arai N., Ozaki S., Nakao K., Nagata S. Expression of the Fas ligand in cells of T cell lineage. J Immunol. 1995 Apr 15;154(8):3806–3813. [PubMed] [Google Scholar]
- Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993 Dec 17;75(6):1169–1178. doi: 10.1016/0092-8674(93)90326-l. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Tanaka M., Brannan C. I., Jenkins N. A., Copeland N. G., Suda T., Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994 Mar 25;76(6):969–976. doi: 10.1016/0092-8674(94)90375-1. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Tanaka M., Inazawa J., Abe T., Suda T., Nagata S. Human Fas ligand: gene structure, chromosomal location and species specificity. Int Immunol. 1994 Oct;6(10):1567–1574. doi: 10.1093/intimm/6.10.1567. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Suda T., Haze K., Nakamura N., Sato K., Kimura F., Motoyoshi K., Mizuki M., Tagawa S., Ohga S. Fas ligand in human serum. Nat Med. 1996 Mar;2(3):317–322. doi: 10.1038/nm0396-317. [DOI] [PubMed] [Google Scholar]
- Tanaka S., Robinson E. A., Yoshimura T., Matsushima K., Leonard E. J., Appella E. Synthesis and biological characterization of monocyte-derived neutrophil chemotactic factor. FEBS Lett. 1988 Aug 29;236(2):467–470. doi: 10.1016/0014-5793(88)80078-4. [DOI] [PubMed] [Google Scholar]
- Watanabe-Fukunaga R., Brannan C. I., Copeland N. G., Jenkins N. A., Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992 Mar 26;356(6367):314–317. doi: 10.1038/356314a0. [DOI] [PubMed] [Google Scholar]
- Watanabe M., Tsuru S., Zinnaka Y., Yoshida T., Aiso S., Hibi T., Asakura H., Tsuchiya M. Demonstration and characterization of immunosuppressive factors in sera from patients with Crohn's disease. J Clin Lab Immunol. 1985 May;17(1):13–19. [PubMed] [Google Scholar]