Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Aug;197(Pt 2):157–166. doi: 10.1046/j.1469-7580.2000.19720157.x

Regression of blood vessels in the ventral velum of Xenopus laevis Daudin during metamorphosis: light microscopic and transmission electron microscopic study

H BARTEL 1, A LAMETSCHWANDTNER 1,
PMCID: PMC1468115  PMID: 11005708

Abstract

Structural changes of the ventral velum of Xenopus laevis tadpoles from late prometamorphosis (stage 58) to the height of metamorphic climax (stage 62) were examined by light and transmission electron microscopy. Special emphasis was given to the blood vessel regression. Early changes of velar capillaries were formation of luminal and abluminal endothelial cell processes, vacuolation, and cytoplasmic and nuclear chromatin condensation. At the height of metamorphic climax, transmission electron microscopy revealed apoptotic endothelial cells with nuclear condensation and fragmentation, intraluminal bulging of rounded endothelial cells which narrowed or even plugged the capillary, and different stages of endothelial cell detachment (‘shedding’) into the vessel lumen. These changes explain the ‘miniaturisation’ of the velar microvascular bed as well as the typical features found in resin-casts of regressing velar vessels which have been observed in a previous scanning electron microscopy study of the ventral velum.

Keywords: Vasculature, capillary endothelium, apoptosis

Full Text

The Full Text of this article is available as a PDF (690.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aichhorn H., Lametschwandtner A. Vascular regression during amphibian metamorphosis--a scanning electron microscope study of vascular corrosion casts of the ventral velum in tadpoles of Xenopus laevis Daudin. Scanning. 1996 Sep;18(6):447–455. doi: 10.1002/sca.1996.4950180607. [DOI] [PubMed] [Google Scholar]
  2. Augustin H. G., Braun K., Telemenakis I., Modlich U., Kuhn W. Ovarian angiogenesis. Phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression. Am J Pathol. 1995 Aug;147(2):339–351. [PMC free article] [PubMed] [Google Scholar]
  3. Ausprunk D. H., Falterman K., Folkman J. The sequence of events in the regression of corneal capillaries. Lab Invest. 1978 Mar;38(3):284–294. [PubMed] [Google Scholar]
  4. Bradley J. R., Thiru S., Pober J. S. Hydrogen peroxide-induced endothelial retraction is accompanied by a loss of the normal spatial organization of endothelial cell adhesion molecules. Am J Pathol. 1995 Sep;147(3):627–641. [PMC free article] [PubMed] [Google Scholar]
  5. Brooks P. C., Montgomery A. M., Rosenfeld M., Reisfeld R. A., Hu T., Klier G., Cheresh D. A. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994 Dec 30;79(7):1157–1164. doi: 10.1016/0092-8674(94)90007-8. [DOI] [PubMed] [Google Scholar]
  6. Budtz P. E., Spies I. Epidermal tissue homeostasis: apoptosis and cell emigration as mechanisms of controlled cell deletion in the epidermis of the toad, Bufo bufo. Cell Tissue Res. 1989 Jun;256(3):475–486. doi: 10.1007/BF00225595. [DOI] [PubMed] [Google Scholar]
  7. Carretero A., Ditrich H., Pérez-Aparicio F. J., Splechtna H., Ruberte J. Development and degeneration of the arterial system in the mesonephros and metanephros of chicken embryos. Anat Rec. 1995 Sep;243(1):120–128. doi: 10.1002/ar.1092430114. [DOI] [PubMed] [Google Scholar]
  8. Falcieri E., Gobbi P., Zamai L., Vitale M. Ultrastructural features of apoptosis. Scanning Microsc. 1994;8(3):653–666. [PubMed] [Google Scholar]
  9. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hurle J. M., Colvee E., Fernandez-Teran M. A. Vascular regression during the formation of the free digits in the avian limb bud: a comparative study in chick and duck embryos. J Embryol Exp Morphol. 1985 Feb;85:239–250. [PubMed] [Google Scholar]
  11. Ingber D. E., Madri J. A., Folkman J. A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology. 1986 Oct;119(4):1768–1775. doi: 10.1210/endo-119-4-1768. [DOI] [PubMed] [Google Scholar]
  12. Ishizuya-Oka A. Apoptosis of larval cells during amphibian metamorphosis. Microsc Res Tech. 1996 Jun 15;34(3):228–235. doi: 10.1002/(SICI)1097-0029(19960615)34:3<228::AID-JEMT5>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  13. Ishizuya-Oka A., Ueda S. Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell Tissue Res. 1996 Dec;286(3):467–476. doi: 10.1007/s004410050716. [DOI] [PubMed] [Google Scholar]
  14. Kato S., Kurihara K. The blood vascular architecture of the salamander external gill: a scanning electron microscopic study of corrosion casts. Okajimas Folia Anat Jpn. 1989 Oct;66(4):171–193. doi: 10.2535/ofaj1936.66.4_171. [DOI] [PubMed] [Google Scholar]
  15. Kerr J. F., Harmon B., Searle J. An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibers. J Cell Sci. 1974 May;14(3):571–585. doi: 10.1242/jcs.14.3.571. [DOI] [PubMed] [Google Scholar]
  16. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lang R., Lustig M., Francois F., Sellinger M., Plesken H. Apoptosis during macrophage-dependent ocular tissue remodelling. Development. 1994 Dec;120(12):3395–3403. doi: 10.1242/dev.120.12.3395. [DOI] [PubMed] [Google Scholar]
  18. Latker C. H., Feinberg R. N., Beebe D. C. Localized vascular regression during limb morphogenesis in the chicken embryo: II. Morphological changes in the vasculature. Anat Rec. 1986 Apr;214(4):410-7, 392-3. doi: 10.1002/ar.1092140412. [DOI] [PubMed] [Google Scholar]
  19. Latker C. H., Kuwabara T. Regression of the tunica vasculosa lentis in the postnatal rat. Invest Ophthalmol Vis Sci. 1981 Nov;21(5):689–699. [PubMed] [Google Scholar]
  20. Michaels J. E., Albright J. T., Patt D. I. Fins structural observations on cell death in the epidermis of the external gills of the larval frog, Rana pipiens. Am J Anat. 1971 Nov;132(3):301–317. doi: 10.1002/aja.1001320303. [DOI] [PubMed] [Google Scholar]
  21. Modlich U., Kaup F. J., Augustin H. G. Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab Invest. 1996 Apr;74(4):771–780. [PubMed] [Google Scholar]
  22. Nishikawa A., Murata E., Akita M., Kaneko K., Moriya O., Tomita M., Hayashi H. Roles of macrophages in programmed cell death and remodeling of tail and body muscle of Xenopus laevis during metamorphosis. Histochem Cell Biol. 1998 Jan;109(1):11–17. doi: 10.1007/s004180050197. [DOI] [PubMed] [Google Scholar]
  23. O'Shea J. D., Nightingale M. G., Chamley W. A. Changes in small blood vessels during cyclical luteal regression in sheep. Biol Reprod. 1977 Sep;17(2):162–177. doi: 10.1095/biolreprod17.2.162. [DOI] [PubMed] [Google Scholar]
  24. Rhodin J. A., Lametschwandtner A. Circulatory pattern and structure in the tail and tail fins of Xenopus laevis tadpoles. J Submicrosc Cytol Pathol. 1993 Jul;25(3):297–318. [PubMed] [Google Scholar]
  25. Tata J. R. Hormonal regulation of programmed cell death during amphibian metamorphosis. Biochem Cell Biol. 1994 Nov-Dec;72(11-12):581–588. doi: 10.1139/o94-077. [DOI] [PubMed] [Google Scholar]
  26. WEBER R. ULTRASTRUCTURAL CHANGES IN REGRESSING TAIL MUSCLES OF XENOPUS LARVAE AT METAMORPHOSIS. J Cell Biol. 1964 Aug;22:481–487. doi: 10.1083/jcb.22.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang J. L., Toida K., Uehara Y. The tunica vasculosa lentis; an expedient system for studying vascular formation and regression. J Electron Microsc (Tokyo) 1990;39(1):46–49. [PubMed] [Google Scholar]
  28. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  29. Yang C., Chang J., Gorospe M., Passaniti A. Protein tyrosine phosphatase regulation of endothelial cell apoptosis and differentiation. Cell Growth Differ. 1996 Feb;7(2):161–171. [PubMed] [Google Scholar]
  30. Yoshizato K. Biochemistry and cell biology of amphibian metamorphosis with a special emphasis on the mechanism of removal of larval organs. Int Rev Cytol. 1989;119:97–149. doi: 10.1016/s0074-7696(08)60650-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES

OSZAR »