Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Jul;215(3):805–817. doi: 10.1113/jphysiol.1971.sp009499

Action potentials and release of neurohypophysial hormones in vitro

J J Dreifuss, Ilva Kalnins, J S Kelly, K B Ruf
PMCID: PMC1331915  PMID: 4326309

Abstract

1. Isolated rat neurohypophyses were studied in vitro and the hormones released on electrical stimulation of the pituitary stalk or on exposure to excess potassium were estimated by a milk-ejection assay.

2. The stalk was stimulated with trains of 500 stimuli, or multiples thereof, applied at different frequencies. Below frequencies of ca. 35 c/s, hormone release was found to depend on the total number of stimuli applied as well as on the frequency of stimulation. Above ca. 35 c/s, identical numbers of stimuli were progressively less effective as the frequency of stimulation was increased, and the dependence of the hormone output on the total number of stimuli was less apparent.

3. The amplitude of the compound action potential recorded from the neurohypophysis following electrical stimulation of the stalk was found to decrease as a function of the frequency of stimulation. Stimulation at 50 c/s reduced its amplitude about sevenfold within 30 sec.

4. The addition of tetrodotoxin (TTX) to the incubation media abolished the compound action potential recorded from the neural lobe as well as the release of hormones evoked by electrical stimulation. Resting release, however, was unaffected by TTX.

5. In TTX-treated neural lobes, excess potassium was still effective in eliciting graded secretory responses. This indicates the independence of the release process from the action potential generating mechanism and suggests that TTX-paralysed preparations represent a useful model for the study of hormone release in the absence of conducted action potentials.

6. The release of hormones from the neurohypophysis and the release of neurotransmitters at chemical synapses both depend on the entry of calcium into the nerve terminals following their depolarization by invading action potentials. In both systems, experimental separation of the release mechanism can be achieved by the use of TTX. These and other parallels suggest that the release process is similar.

Full text

PDF
805

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisset G. W., Clark B. J., Haldar J., Harris M. C., Lewis G. P., Rocha e Silva R., Jr The assay of milk-ejecting activity in the lactating rat. Br J Pharmacol Chemother. 1967 Nov;31(3):537–549. doi: 10.1111/j.1476-5381.1967.tb00418.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooks C. M., Ishikawa T., Koizumi K., Lu H. H. Activity of neurones in the paraventricular nucleus of the hypothalamus and its control. J Physiol. 1966 Jan;182(1):217–231. doi: 10.1113/jphysiol.1966.sp007820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DOUGLAS W. W., POISNER A. M. CALCIUM MOVEMENT IN THE NEUROHYPOPHYSIS OF THE RAT AND ITS RELATION TO THE RELEASE OF VASOPRESSIN. J Physiol. 1964 Jul;172:19–30. doi: 10.1113/jphysiol.1964.sp007400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOUGLAS W. W., POISNER A. M. STIMULUS-SECRETION COUPLING IN A NEUROSECRETORY ORGAN: THE ROLE OF CALCIUM IN THE RELEASE OF VASOPRESSIN FROM THE NEUROHYPOPHYSIS. J Physiol. 1964 Jul;172:1–18. doi: 10.1113/jphysiol.1964.sp007399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniel A. R., Lederis K. Release of neurohypophysial hormones in vitro. J Physiol. 1967 May;190(1):171–187. doi: 10.1113/jphysiol.1967.sp008200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dicker S. E. Release of vasopressin and oxytocin from isolated pituitary glands of adult and new-born rats. J Physiol. 1966 Jul;185(2):429–444. doi: 10.1113/jphysiol.1966.sp007994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dyball R. E., Koizumi K. Electrical activity in the supraoptic and paraventricular nuclei associated with neurohypophysial hormone release. J Physiol. 1969 May;201(3):711–722. doi: 10.1113/jphysiol.1969.sp008783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HALLER E. W., SACHS H., SPERELAKIS N., SHARE L. RELEASE OF VASOPRESSIN FROM ISOLATED GUINEA PIG POSTERIOR PITUITARIES. Am J Physiol. 1965 Jul;209:79–83. doi: 10.1152/ajplegacy.1965.209.1.79. [DOI] [PubMed] [Google Scholar]
  10. Harris G. W., Manabe Y., Ruf K. B. A study of the parameters of electrical stimulation of unmyelinated fibres in the pituitary stalk. J Physiol. 1969 Jul;203(1):67–81. doi: 10.1113/jphysiol.1969.sp008850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishida A. Stimulus-secretion coupling on the oxytocin release from the isolated posterior pituitary lobe. Jpn J Physiol. 1968 Aug 15;18(4):471–480. doi: 10.2170/jjphysiol.18.471. [DOI] [PubMed] [Google Scholar]
  12. Ishida A. The effect of tetrodotoxin on the calcium-dependent link in stimulus-secretion coupling in neurohypophysis. Jpn J Physiol. 1967 Jun;17(3):308–320. doi: 10.2170/jjphysiol.17.308. [DOI] [PubMed] [Google Scholar]
  13. Ishida A. The oxytocin release and the compound action potential evoked by electrical stimulation on the isolated neurohypophysis of the rat. Jpn J Physiol. 1970 Feb 15;20(1):84–96. doi: 10.2170/jjphysiol.20.84. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa T., Koizumi K., Brooks C. M. Electrical activity recorded from the pituitary stalk of the cat. Am J Physiol. 1966 Mar;210(3):427–431. doi: 10.1152/ajplegacy.1966.210.3.427. [DOI] [PubMed] [Google Scholar]
  15. KANDEL E. R. ELECTRICAL PROPERTIES OF HYPOTHALAMIC NEUROENDOCRINE CELLS. J Gen Physiol. 1964 Mar;47:691–717. doi: 10.1085/jgp.47.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz B., Miledi R. Tetrodotoxin and neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):8–22. doi: 10.1098/rspb.1967.0010. [DOI] [PubMed] [Google Scholar]
  18. Katz B., Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968 Mar;195(2):481–492. doi: 10.1113/jphysiol.1968.sp008469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kelly J. S., Dreifuss J. J. Antidromic inhibition of identified rat supraoptic neurones. Brain Res. 1970 Sep 16;22(3):406–409. doi: 10.1016/0006-8993(70)90483-x. [DOI] [PubMed] [Google Scholar]
  20. Keynes R. D., Ritchie J. M. The movements of labelled ions in mammalian non-myelinated nerve fibres. J Physiol. 1965 Jul;179(2):333–367. doi: 10.1113/jphysiol.1965.sp007666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mikiten T. M., Douglas W. W. Effect of calcium and other ions on vasopressin release from rat neurohypophyses stimulated electrically in vitro. Nature. 1965 Jul 17;207(994):302–302. doi: 10.1038/207302a0. [DOI] [PubMed] [Google Scholar]
  22. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Novin D., Sundsten J. W., Cross B. A. Some properties of antidromically activated units in the paraventricular nucleus of the hypothalamus. Exp Neurol. 1970 Feb;26(2):330–341. doi: 10.1016/0014-4886(70)90130-5. [DOI] [PubMed] [Google Scholar]
  24. Sundsten J. W., Novin D., Cross B. A. Identification and distribution of paraventricular units excited by stimulation of the neural lobe of the hypophysis. Exp Neurol. 1970 Feb;26(2):316–329. doi: 10.1016/0014-4886(70)90129-9. [DOI] [PubMed] [Google Scholar]
  25. Yagi K., Azuma T., Matsuda K. Neurosecretory cell: capable of conducting impulse in rats. Science. 1966 Nov 11;154(3750):778–779. doi: 10.1126/science.154.3750.778. [DOI] [PubMed] [Google Scholar]
  26. Yamashita H., Koizumi K., Brooks C. M. Electrophysiological studies of neurosecretory cells in the cat hypothalamus. Brain Res. 1970 Jun 15;20(3):462–466. doi: 10.1016/0006-8993(70)90176-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES

OSZAR »