Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Dec;110(Suppl 6):925–929. doi: 10.1289/ehp.02110s6925

Problems for risk assessment of endocrine-active estrogenic compounds.

Stephen H Safe 1, Lea Pallaroni 1, Kyungsil Yoon 1, Kevin Gaido 1, Susan Ross 1, Donald McDonnell 1
PMCID: PMC1241274  PMID: 12634121

Abstract

Estrogenic industrial compounds such as bisphenol A (BPA) and nonylphenol typically bind estrogen receptor (ER) alpha and ERBeta and induce transactivation of estrogen-responsive genes/reporter genes, but their potencies are usually greater than or equal to 1,000-fold lower than observed for 17Beta-estradiol. Risk assessment of estrogenic compounds on the basis of their potencies in simple reporter gene or binding assays may be inappropriate. For example, selective ER modulators (SERMs) represent another class of synthetic estrogens being developed for treatment of hormone-dependent problems. SERMs differentially activate wild-type ERalpha and variant forms expressing activation function 1 (ER-AF1) and AF2 (ER-AF2) in human HepG2 hepatoma cells transfected with an estrogen-responsive complement C3 promoter-luciferase construct, and these in vitro differences reflect their unique in vivo biologies. The HepG2 cell assay has also been used in our laboratories to investigate the estrogenic activities of the following structurally diverse synthetic and phytoestrogens: 4 -hydroxytamoxifen; BPA; 2 ,4 ,6 -trichloro-4-biphenylol; 2 ,3 ,4 ,5 -tetrachloro-4-biphenylol; p-t-octylphenol; p-nonylphenol; naringenin; kepone; resveratrol; and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane. The results show that synthetic and phytoestrogens are weakly estrogenic but induce distinct patterns of ER agonist/antagonist activities that are cell context- and promoter-dependent, suggesting that these compounds will induce tissue-specific (in vivo(ER agonist or antagonist activities. These results suggest that other receptors, such as the aryl hydrocarbon receptor, that also bind structurally diverse ligands may exhibit unique responses in vivo that are not predicted by standard in vitro bioassays.

Full Text

The Full Text of this article is available as a PDF (155.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlborg U. G., Brouwer A., Fingerhut M. A., Jacobson J. L., Jacobson S. W., Kennedy S. W., Kettrup A. A., Koeman J. H., Poiger H., Rappe C. Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept. Eur J Pharmacol. 1992 Dec 1;228(4):179–199. doi: 10.1016/0926-6917(92)90029-c. [DOI] [PubMed] [Google Scholar]
  2. Barkhem T., Carlsson B., Nilsson Y., Enmark E., Gustafsson J., Nilsson S. Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol. 1998 Jul;54(1):105–112. doi: 10.1124/mol.54.1.105. [DOI] [PubMed] [Google Scholar]
  3. Birnbaum L. S., DeVito M. J. Use of toxic equivalency factors for risk assessment for dioxins and related compounds. Toxicology. 1995 Dec 28;105(2-3):391–401. doi: 10.1016/0300-483x(95)03237-a. [DOI] [PubMed] [Google Scholar]
  4. Bjeldanes L. F., Kim J. Y., Grose K. R., Bartholomew J. C., Bradfield C. A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9543–9547. doi: 10.1073/pnas.88.21.9543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Ohman L., Greene G. L., Gustafsson J. A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
  6. Casper R. F., Quesne M., Rogers I. M., Shirota T., Jolivet A., Milgrom E., Savouret J. F. Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol Pharmacol. 1999 Oct;56(4):784–790. [PubMed] [Google Scholar]
  7. Chen I., Safe S., Bjeldanes L. Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem Pharmacol. 1996 Apr 26;51(8):1069–1076. doi: 10.1016/0006-2952(96)00060-3. [DOI] [PubMed] [Google Scholar]
  8. Ciolino H. P., Daschner P. J., Yeh G. C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J. 1999 Jun 15;340(Pt 3):715–722. [PMC free article] [PubMed] [Google Scholar]
  9. Ciolino H. P., Daschner P. J., Yeh G. C. Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res. 1998 Dec 15;58(24):5707–5712. [PubMed] [Google Scholar]
  10. Ciolino H. P., Wang T. T., Yeh G. C. Diosmin and diosmetin are agonists of the aryl hydrocarbon receptor that differentially affect cytochrome P450 1A1 activity. Cancer Res. 1998 Jul 1;58(13):2754–2760. [PubMed] [Google Scholar]
  11. Ciolino H. P., Yeh G. C. Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol Pharmacol. 1999 Oct;56(4):760–767. [PubMed] [Google Scholar]
  12. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davis D. L., Bradlow H. L., Wolff M., Woodruff T., Hoel D. G., Anton-Culver H. Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Health Perspect. 1993 Oct;101(5):372–377. doi: 10.1289/ehp.93101372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gaido K. W., Leonard L. S., Maness S. C., Hall J. M., McDonnell D. P., Saville B., Safe S. Differential interaction of the methoxychlor metabolite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane with estrogen receptors alpha and beta. Endocrinology. 1999 Dec;140(12):5746–5753. doi: 10.1210/endo.140.12.7191. [DOI] [PubMed] [Google Scholar]
  15. Gaido K. W., Maness S. C., McDonnell D. P., Dehal S. S., Kupfer D., Safe S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol Pharmacol. 2000 Oct;58(4):852–858. [PubMed] [Google Scholar]
  16. Gaido K., Dohme L., Wang F., Chen I., Blankvoort B., Ramamoorthy K., Safe S. Comparative estrogenic activity of wine extracts and organochlorine pesticide residues in food. Environ Health Perspect. 1998 Dec;106 (Suppl 6):1347–1351. doi: 10.1289/ehp.98106s61347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gasiewicz T. A., Kende A. S., Rucci G., Whitney B., Willey J. J. Analysis of structural requirements for Ah receptor antagonist activity: ellipticines, flavones, and related compounds. Biochem Pharmacol. 1996 Dec 13;52(11):1787–1803. doi: 10.1016/s0006-2952(96)00600-4. [DOI] [PubMed] [Google Scholar]
  18. Gehm B. D., McAndrews J. M., Chien P. Y., Jameson J. L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14138–14143. doi: 10.1073/pnas.94.25.14138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldman J. M., Laws S. C., Balchak S. K., Cooper R. L., Kavlock R. J. Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. A focus on the EDSTAC recommendations. Crit Rev Toxicol. 2000 Mar;30(2):135–196. doi: 10.1080/10408440091159185. [DOI] [PubMed] [Google Scholar]
  20. Gould J. C., Leonard L. S., Maness S. C., Wagner B. L., Conner K., Zacharewski T., Safe S., McDonnell D. P., Gaido K. W. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol. 1998 Jul 25;142(1-2):203–214. doi: 10.1016/s0303-7207(98)00084-7. [DOI] [PubMed] [Google Scholar]
  21. Gradelet S., Astorg P., Pineau T., Canivenc M. C., Siess M. H., Leclerc J., Lesca P. Ah receptor-dependent CYP1A induction by two carotenoids, canthaxanthin and beta-apo-8'-carotenal, with no affinity for the TCDD binding site. Biochem Pharmacol. 1997 Jul 15;54(2):307–315. doi: 10.1016/s0006-2952(97)00176-7. [DOI] [PubMed] [Google Scholar]
  22. Hall J. M., Chang C. Y., McDonnell D. P. Development of peptide antagonists that target estrogen receptor beta-coactivator interactions. Mol Endocrinol. 2000 Dec;14(12):2010–2023. doi: 10.1210/mend.14.12.0561. [DOI] [PubMed] [Google Scholar]
  23. Jellinck P. H., Forkert P. G., Riddick D. S., Okey A. B., Michnovicz J. J., Bradlow H. L. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem Pharmacol. 1993 Mar 9;45(5):1129–1136. doi: 10.1016/0006-2952(93)90258-x. [DOI] [PubMed] [Google Scholar]
  24. Jordan V. C., Mittal S., Gosden B., Koch R., Lieberman M. E. Structure-activity relationships of estrogens. Environ Health Perspect. 1985 Sep;61:97–110. doi: 10.1289/ehp.856197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jordan VC. Targeted Antiestrogens to Prevent Breast Cancer. Trends Endocrinol Metab. 1999 Oct;10(8):312–317. doi: 10.1016/s1043-2760(99)00181-2. [DOI] [PubMed] [Google Scholar]
  26. Katzenellenbogen J. A. The structural pervasiveness of estrogenic activity. Environ Health Perspect. 1995 Oct;103 (Suppl 7):99–101. doi: 10.1289/ehp.95103s799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Klinge C. M., Bowers J. L., Kulakosky P. C., Kamboj K. K., Swanson H. I. The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements. Mol Cell Endocrinol. 1999 Nov 25;157(1-2):105–119. doi: 10.1016/s0303-7207(99)00165-3. [DOI] [PubMed] [Google Scholar]
  28. Kuiper G. G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., Gustafsson J. A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997 Mar;138(3):863–870. doi: 10.1210/endo.138.3.4979. [DOI] [PubMed] [Google Scholar]
  29. Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., Gustafsson J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
  30. Lu R., Serrero G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J Cell Physiol. 1999 Jun;179(3):297–304. doi: 10.1002/(SICI)1097-4652(199906)179:3<297::AID-JCP7>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  31. McDonnell D. P., Clemm D. L., Hermann T., Goldman M. E., Pike J. W. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol. 1995 Jun;9(6):659–669. doi: 10.1210/mend.9.6.8592512. [DOI] [PubMed] [Google Scholar]
  32. McDonnell DP. The Molecular Pharmacology of SERMs. Trends Endocrinol Metab. 1999 Oct;10(8):301–311. doi: 10.1016/s1043-2760(99)00177-0. [DOI] [PubMed] [Google Scholar]
  33. Norris J. D., Paige L. A., Christensen D. J., Chang C. Y., Huacani M. R., Fan D., Hamilton P. T., Fowlkes D. M., McDonnell D. P. Peptide antagonists of the human estrogen receptor. Science. 1999 Jul 30;285(5428):744–746. doi: 10.1126/science.285.5428.744. [DOI] [PubMed] [Google Scholar]
  34. Paige L. A., Christensen D. J., Grøn H., Norris J. D., Gottlin E. B., Padilla K. M., Chang C. Y., Ballas L. M., Hamilton P. T., McDonnell D. P. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3999–4004. doi: 10.1073/pnas.96.7.3999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pike A. C., Brzozowski A. M., Hubbard R. E., Bonn T., Thorsell A. G., Engström O., Ljunggren J., Gustafsson J. A., Carlquist M. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999 Sep 1;18(17):4608–4618. doi: 10.1093/emboj/18.17.4608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ruh M. F., Zacharewski T., Connor K., Howell J., Chen I., Safe S. Naringenin: a weakly estrogenic bioflavonoid that exhibits antiestrogenic activity. Biochem Pharmacol. 1995 Oct 26;50(9):1485–1493. doi: 10.1016/0006-2952(95)02061-6. [DOI] [PubMed] [Google Scholar]
  37. Safe S. H. Development validation and problems with the toxic equivalency factor approach for risk assessment of dioxins and related compounds. J Anim Sci. 1998 Jan;76(1):134–141. doi: 10.2527/1998.761134x. [DOI] [PubMed] [Google Scholar]
  38. Safe S. H. Endocrine disruptors and human health--is there a problem? An update. Environ Health Perspect. 2000 Jun;108(6):487–493. doi: 10.1289/ehp.00108487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Safe S. H. Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach. Environ Health Perspect. 1998 Aug;106 (Suppl 4):1051–1058. doi: 10.1289/ehp.98106s41051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Safe S. H. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol. 1994;24(2):87–149. doi: 10.3109/10408449409049308. [DOI] [PubMed] [Google Scholar]
  41. Safe S. Limitations of the toxic equivalency factor approach for risk assessment of TCDD and related compounds. Teratog Carcinog Mutagen. 1997;17(4-5):285–304. [PubMed] [Google Scholar]
  42. Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol. 1990;21(1):51–88. doi: 10.3109/10408449009089873. [DOI] [PubMed] [Google Scholar]
  43. Schaufele F., Chang C. Y., Liu W., Baxter J. D., Nordeen S. K., Wan Y., Day R. N., McDonnell D. P. Temporally distinct and ligand-specific recruitment of nuclear receptor-interacting peptides and cofactors to subnuclear domains containing the estrogen receptor. Mol Endocrinol. 2000 Dec;14(12):2024–2039. doi: 10.1210/mend.14.12.0572. [DOI] [PubMed] [Google Scholar]
  44. Sharpe R. M. Reproductive biology. Another DDT connection. Nature. 1995 Jun 15;375(6532):538–539. doi: 10.1038/375538a0. [DOI] [PubMed] [Google Scholar]
  45. Sharpe R. M., Skakkebaek N. E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet. 1993 May 29;341(8857):1392–1395. doi: 10.1016/0140-6736(93)90953-e. [DOI] [PubMed] [Google Scholar]
  46. Shiau A. K., Barstad D., Loria P. M., Cheng L., Kushner P. J., Agard D. A., Greene G. L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998 Dec 23;95(7):927–937. doi: 10.1016/s0092-8674(00)81717-1. [DOI] [PubMed] [Google Scholar]
  47. Silkworth J. B., Brown J. F., Jr Evaluating the impact of exposure to environmental contaminants on human health. Clin Chem. 1996 Aug;42(8 Pt 2):1345–1349. [PubMed] [Google Scholar]
  48. Smith C. L., O'Malley B. W. Evolving concepts of selective estrogen receptor action: from basic science to clinical applications. Trends Endocrinol Metab. 1999 Oct;10(8):299–300. doi: 10.1016/s1043-2760(99)00183-6. [DOI] [PubMed] [Google Scholar]
  49. Stoker T. E., Parks L. G., Gray L. E., Cooper R. L. Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee. Crit Rev Toxicol. 2000 Mar;30(2):197–252. doi: 10.1080/10408440091159194. [DOI] [PubMed] [Google Scholar]
  50. Tzukerman M. T., Esty A., Santiso-Mere D., Danielian P., Parker M. G., Stein R. B., Pike J. W., McDonnell D. P. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol. 1994 Jan;8(1):21–30. doi: 10.1210/mend.8.1.8152428. [DOI] [PubMed] [Google Scholar]
  51. Wijayaratne A. L., Nagel S. C., Paige L. A., Christensen D. J., Norris J. D., Fowlkes D. M., McDonnell D. P. Comparative analyses of mechanistic differences among antiestrogens. Endocrinology. 1999 Dec;140(12):5828–5840. doi: 10.1210/endo.140.12.7164. [DOI] [PubMed] [Google Scholar]
  52. Yoon K., Pallaroni L., Stoner M., Gaido K., Safe S. Differential activation of wild-type and variant forms of estrogen receptor alpha by synthetic and natural estrogenic compounds using a promoter containing three estrogen-responsive elements. J Steroid Biochem Mol Biol. 2001 Jul;78(1):25–32. doi: 10.1016/s0960-0760(01)00070-x. [DOI] [PubMed] [Google Scholar]
  53. Yoon K., Pellaroni L., Ramamoorthy K., Gaido K., Safe S. Ligand structure-dependent differences in activation of estrogen receptor alpha in human HepG2 liver and U2 osteogenic cancer cell lines. Mol Cell Endocrinol. 2000 Apr 25;162(1-2):211–220. doi: 10.1016/s0303-7207(99)00261-0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES

OSZAR »