Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 15;292(Pt 1):217–223. doi: 10.1042/bj2920217

Sulphydryl agents modulate insulin- and epidermal growth factor (EGF)-receptor kinase via reaction with intracellular receptor domains: differential effects on basal versus activated receptors.

S Clark 1, N Konstantopoulos 1
PMCID: PMC1134291  PMID: 8389126

Abstract

Sulphydryl reagents have been shown to produce a variety of effects on insulin-receptor structure and function. However, localization of these effects to specific receptor domains has not been attempted. We have investigated this question with insulin- and epidermal growth factor (EGF)-receptors (both are receptor tyrosine kinases but have different sulphydryl/disulphide structures within the external domain), and the insulin receptor kinase (IRK) protein consisting solely of the insulin-receptor cytoplasmic domain and exhibiting constitutive kinase activity. Results showed a differential response between basal and activated receptors. The physiological reductant GSH stimulated basal receptor autophosphorylation, but was either without effect (EGF) or inhibited (insulin) activated receptors, and occurred without visible reduction of receptor structure. These results contrast with those obtained with dithiothreitol which appears to activate phosphorylation in association with reduction of the extracellular insulin-receptor disulphides, but is without effect on the EGF receptor or the IRK protein. Alkylating agents N-ethylmaleimide (NEM) and iodoacetamide (IAM) had opposing effects on receptor autophosphorylation. However, only in the basal state was IAM able to protect receptors from the inhibitory effect of NEM. Our results suggest that complex sulphydryl interactions can occur within the cytoplasmic domain of insulin- and EGF-receptors to alter receptor kinase activity. The basal and activated state of receptors is not the same with respect to sulphydryl reagent action, possibly due to conformational change in the receptor induced by ligand (insulin, EGF) or constitutive (IRK) activation.

Full text

PDF
217

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajaj M., Waterfield M. D., Schlessinger J., Taylor W. R., Blundell T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta. 1987 Nov 26;916(2):220–226. doi: 10.1016/0167-4838(87)90112-9. [DOI] [PubMed] [Google Scholar]
  2. Baron V., Gautier N., Komoriya A., Hainaut P., Scimeca J. C., Mervic M., Lavielle S., Dolais-Kitabgi J., Van Obberghen E. Insulin binding to its receptor induces a conformational change in the receptor C-terminus. Biochemistry. 1990 May 15;29(19):4634–4641. doi: 10.1021/bi00471a019. [DOI] [PubMed] [Google Scholar]
  3. Bauskin A. R., Alkalay I., Ben-Neriah Y. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell. 1991 Aug 23;66(4):685–696. doi: 10.1016/0092-8674(91)90114-e. [DOI] [PubMed] [Google Scholar]
  4. Chen J. J., Kosower N. S., Petryshyn R., London I. M. The effects of N-ethylmaleimide on the phosphorylation and aggregation of insulin receptors in the isolated plasma membranes of 3T3-F442A adipocytes. J Biol Chem. 1986 Jan 15;261(2):902–908. [PubMed] [Google Scholar]
  5. Chiacchia K. B. Quantitation of the class I disulfides of the insulin receptor. Biochem Biophys Res Commun. 1991 May 15;176(3):1178–1182. doi: 10.1016/0006-291x(91)90409-z. [DOI] [PubMed] [Google Scholar]
  6. Chiacchia K. B. Reoxidation of the class I disulfides of the rat adipocyte insulin receptor is dependent upon the presence of insulin: the class I disulfide of the insulin receptor is extracellular. Biochemistry. 1988 Jun 28;27(13):4894–4902. doi: 10.1021/bi00413a046. [DOI] [PubMed] [Google Scholar]
  7. Chin J. E., Tavaré J. M., Ellis L., Roth R. A. Evidence for hybrid rodent and human insulin receptors in transfected cells. J Biol Chem. 1991 Aug 25;266(24):15587–15590. [PubMed] [Google Scholar]
  8. Clark S., Cheng D. J., Hsuan J. J., Haley J. D., Waterfield M. D. Loss of three major auto phosphorylation sites in the EGF receptor does not block the mitogenic action of EGF. J Cell Physiol. 1988 Mar;134(3):421–428. doi: 10.1002/jcp.1041340313. [DOI] [PubMed] [Google Scholar]
  9. Cobb M. H., Sang B. C., Gonzalez R., Goldsmith E., Ellis L. Autophosphorylation activates the soluble cytoplasmic domain of the insulin receptor in an intermolecular reaction. J Biol Chem. 1989 Nov 5;264(31):18701–18706. [PubMed] [Google Scholar]
  10. Cochet C., Kashles O., Chambaz E. M., Borrello I., King C. R., Schlessinger J. Demonstration of epidermal growth factor-induced receptor dimerization in living cells using a chemical covalent cross-linking agent. J Biol Chem. 1988 Mar 5;263(7):3290–3295. [PubMed] [Google Scholar]
  11. Creighton T. E. Disulfide bond formation in proteins. Methods Enzymol. 1984;107:305–329. doi: 10.1016/0076-6879(84)07021-x. [DOI] [PubMed] [Google Scholar]
  12. Czech M. P. Differential effects of sulfhydryl reagents on activation and deactivation of the fat cell hexose transport system. J Biol Chem. 1976 Feb 25;251(4):1164–1170. [PubMed] [Google Scholar]
  13. Ellis L., Levitan A., Cobb M. H., Ramos P. Efficient expression in insect cells of a soluble, active human insulin receptor protein-tyrosine kinase domain by use of a baculovirus vector. J Virol. 1988 May;62(5):1634–1639. doi: 10.1128/jvi.62.5.1634-1639.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Finn F. M., Ridge K. D., Hofmann K. Labile disulfide bonds in human placental insulin receptor. Proc Natl Acad Sci U S A. 1990 Jan;87(1):419–423. doi: 10.1073/pnas.87.1.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fujita-Yamaguchi Y., Kathuria S. The monomeric alpha beta form of the insulin receptor exhibits much higher insulin-dependent tyrosine-specific protein kinase activity than the intact alpha 2 beta 2 form of the receptor. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6095–6099. doi: 10.1073/pnas.82.18.6095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ganderton R. H., Stanley K. K., Field C. E., Coghlan M. P., Soos M. A., Siddle K. A monoclonal anti-peptide antibody reacting with the insulin receptor beta-subunit. Characterization of the antibody and its epitope and use in immunoaffinity purification of intact receptors. Biochem J. 1992 Nov 15;288(Pt 1):195–205. doi: 10.1042/bj2880195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gilbert H. F. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol. 1990;63:69–172. doi: 10.1002/9780470123096.ch2. [DOI] [PubMed] [Google Scholar]
  18. Hercbergs A., Brok-Simoni F., Holtzman F., Bar-Am J., Leith J. T., Brenner H. J. Erythrocyte glutathione and tumour response to chemotherapy. Lancet. 1992 May 2;339(8801):1074–1076. doi: 10.1016/0140-6736(92)90664-o. [DOI] [PubMed] [Google Scholar]
  19. Herrera R., Rosen O. M. Autophosphorylation of the insulin receptor in vitro. Designation of phosphorylation sites and correlation with receptor kinase activation. J Biol Chem. 1986 Sep 15;261(26):11980–11985. [PubMed] [Google Scholar]
  20. Kanner S. B., Kavanagh T. J., Grossmann A., Hu S. L., Bolen J. B., Rabinovitch P. S., Ledbetter J. A. Sulfhydryl oxidation down-regulates T-cell signaling and inhibits tyrosine phosphorylation of phospholipase C gamma 1. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):300–304. doi: 10.1073/pnas.89.1.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li C. H., Moule M. L., Yip C. C. Insulin receptors prepared with iodoacetamide show enhanced autophosphorylation and receptor kinase activity. J Biol Chem. 1991 Apr 15;266(11):7051–7057. [PubMed] [Google Scholar]
  22. Ludvigsen C., Jarett L. Similarities between insulin, hydrogen peroxide, concanavalin A, and anti-insulin receptor antibody stimulated glucose transport: increase in the number of transport sites. Metabolism. 1982 Mar;31(3):284–287. doi: 10.1016/0026-0495(82)90066-x. [DOI] [PubMed] [Google Scholar]
  23. Massagué J., Czech M. P. Role of disulfides in the subunit structure of the insulin receptor. Reduction of class I disulfides does not impair transmembrane signalling. J Biol Chem. 1982 Jun 25;257(12):6729–6738. [PubMed] [Google Scholar]
  24. McLennan S. V., Heffernan S., Wright L., Rae C., Fisher E., Yue D. K., Turtle J. R. Changes in hepatic glutathione metabolism in diabetes. Diabetes. 1991 Mar;40(3):344–348. doi: 10.2337/diab.40.3.344. [DOI] [PubMed] [Google Scholar]
  25. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  26. Perlman R., Bottaro D. P., White M. F., Kahn C. R. Conformational changes in the alpha- and beta-subunits of the insulin receptor identified by anti-peptide antibodies. J Biol Chem. 1989 May 25;264(15):8946–8950. [PubMed] [Google Scholar]
  27. Savage C. R., Jr, Cohen S. Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 1972 Dec 10;247(23):7609–7611. [PubMed] [Google Scholar]
  28. Sweet L. J., Morrison B. D., Wilden P. A., Pessin J. E. Insulin-dependent intermolecular subunit communication between isolated alpha beta heterodimeric insulin receptor complexes. J Biol Chem. 1987 Dec 5;262(34):16730–16738. [PubMed] [Google Scholar]
  29. Tavaré J. M., Clack B., Ellis L. Two-dimensional phosphopeptide analysis of the autophosphorylation cascade of a soluble insulin receptor tyrosine kinase. The tyrosines phosphorylated are typical of those observed following phosphorylation of the heterotetrameric insulin receptor in intact cells. J Biol Chem. 1991 Jan 25;266(3):1390–1395. [PubMed] [Google Scholar]
  30. Wilden P. A., Boyle T. R., Swanson M. L., Sweet L. J., Pessin J. E. Alteration of intramolecular disulfides in insulin receptor/kinase by insulin and dithiothreitol: insulin potentiates the apparent dithiothreitol-dependent subunit reduction of insulin receptor. Biochemistry. 1986 Jul 29;25(15):4381–4388. doi: 10.1021/bi00363a031. [DOI] [PubMed] [Google Scholar]
  31. Wilden P. A., Pessin J. E. Differential sensitivity of the insulin-receptor kinase to thiol and oxidizing agents in the absence and presence of insulin. Biochem J. 1987 Jul 15;245(2):325–331. doi: 10.1042/bj2450325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xu Q. Y., Paxton R. J., Fujita-Yamaguchi Y. Substructural analysis of the insulin receptor by microsequence analyses of limited tryptic fragments isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence or presence of dithiothreitol. J Biol Chem. 1990 Oct 25;265(30):18673–18681. [PubMed] [Google Scholar]
  33. Zick Y. The insulin receptor: structure and function. Crit Rev Biochem Mol Biol. 1989;24(3):217–269. doi: 10.3109/10409238909082554. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES

OSZAR »